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THE TEMPERATURE CALCULATION OF AN ORTHOTROPIC PLATE

WITH TRANSVERSE SHEAR TAKEN INTO CONSIDERATION

S. M. Durgarlyan
(Yerevan)

1. Statement of the problem. We will examine a rectangular

orthotropic plate of constant thickness h referred to rectangular

cartesian coordinates. We will combine the coordinate plane xoy with

the average plane of an undeformed plate, we will direct the coordinate

axes along the principal directions of elasticity of the plate mate-

rial, and we will set the coordinate origin at one of the apexes of the

plate. The deformation factors E., PiJ" G i and the thermal coef-

ficients of expansion pi will be considered as given functions of

temperature T, changing according to a known law.

Here, as usual, Ei and P, are, respectively, Youngls modulus art.

the thermal coefficient of expansion along the coordinate axis i; th

Poisson coefficient giJ characterizes contraction in the direction

during expansion in direction i; the shear modulus Gij characterizes

the change in angle between principal directions i and 1.

We will assume that the relative deformation throughout the plate

is conditioned by free thermal expansion

FTD-TT-63-5291+2+4-



,= j (CI. 1)

Using as our basis a theory developed by S. A. Ambartsumyan [1],

we will consider that the tangential stresses Txz and Ty z can be

represented as

'CT=I (-),q (Z. Y). T,, W (:)VP (x. Y) (1.2)

where p(xY) and *(x,y) are unknown functions, fi(z) are given func-

tions which characterize the law of change of tangential stresses

T xz and Txy throughout the plate; fi( + h/2) = 0.

2. Derivation of the basic equations. Using the accepted rep-

resentation of tangential stresses (1.2), having integrated over z

the third differential equation of equilibrium of a volume element

(assuming absence of volumetric fo.ces) and having designated

,(a , 4(5) d. (2.1)

0

we will obtain

a, xy, co (x, y)F,,,.).2i-- Fs,) W - (2.2)

where a o(Xy) is the integration function describing the distribution

of normal stresses along the average plane of the plate (z = 0) and

is determined from the conditions

, ±h/2) . o (2.3)

Taking into account (2.3), from (2.2) we obtain the value of the

integration function

Go ,Z)3- 5 ++ F, k+ F, h + -, -(-
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and also the differential dependence

[F(1±) -F* (--L)] 211 +[P. (AL .( 2) V (2.41)

which, as we can easily see, is the third equation of equilibrium of

the plate element [1].

Using the found value of the integration function a0 (x,y) and

having set

Ct [F + (i-1, 2) (2.5I F 2 2 -5

for stress az(xy,z) we obtain the expression

dX (2.6)
a, x.y. )= el--Pz(i1) + 8! - ,( j]a-

We know from earlier articles ([41, pp. 74-75; [1], pp. 315-316)

that it is advantageous to accept the functions fi(z) in the form

2 !~(2.7)

From (2.1), by virtue of (2.7), we. obtain
F(s) - F (s) - P1 (s) - -L- (-t- -)

Thus, taking into account (2.4)-(2.6), we will have c= C2 - z

(xyz) - 0.

It is easily ascertained that stress az is equal to zero in all

cases when the functions fj(z) and f2 (z) are even functions of the

coordinate z and are equal to each other.

From this, in subsequent calculations we will set a = 0.

On the basis of Franz Neumans hypothesis [2], from the ge'ner-

alized Hooke law we have

-- Die., + Be + QoT, -= Bne, + Sanw + QT

= D.ue,, X, , -D... (2.8)
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where, as usual (for example, [11),

E. E, ElIVX EWNU

E - E, (2.9)X - .I (AX= + P'VXDV). '" -I*.1, , IP, + A3V)

Pa lM Gus, DMC"s. D= GV

Using the known relations between displacements and deformations

and also taking into account (1.1), (1.2) and the last two equations

of (2.8), for projections of displacement u X, uy and uz we obtain

UX.U o _ _ (2.10)
-u- •;-+ yr1. - w-a -I,+Vr,, ,-l+I(

Here

u M . . ) -- - W , * - u. 18,

• .I ; r . d

A '", .fo. ." .

1'.C71J j. ' .15 OT

-. ~~~~ al q -f 11,6 29 ~ T ~r ~r



unknowns u, T.wq) and , 8w

Tx CILZ aC1 . + Cis Ox'a KI s Cu'

Clav +CIL L C12 2 11 il 120" + 01.
x Oy- 18

rv ds - Cis au + Cu L Ki 'o K__W+ le

Ctm"'P+ Cnax+Gin T-RI. RMV+ 14

hi u a L

+ CmM* + Cail + -I:~ -H. x -H 0
t

N s1 - ix Nr..d h

-h/A

11A a ' -DuXz"P (2.13)

axzd = u + i. Lv -Dil' -RD, +

M.in at ~ ix

H + ASiv 1 p + in .(+ Jr). D8:

OW O
+K.N ~+.. + Kul~ H x

Here we use the designations

C, BisJr - Bsz.Di Bjs'd, C1 - Brdr

ILAro

KU rsdz, C1 1,. D 1V . dx, K AS/ D -V ds(21)

(i It, 12, 22, 66; j 1, 2; v -x, y)

a" oft* 5~sds (in:, Y; inyr V-0, 1; i#i)

-j 38Dis 0.ds (i- It, 12, 22; v -wxy; j0. 1)

-W/
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Introducing (2.13) into the equations of equilibrium of the plate

element, f6r determining the five unknowns u, v, w, , and * we obtain

the following system of five differential equations with variable coef-

fioients:

~~ (c~ -h.) . (C. 4) + [ (C~..) + .4L (c. c)
+ [ (K, a2 0+ s )+ 2(K..+ ')]

T- -rs 7a0 -i- CautV + q

+[(C."° a+ C.' a*+ a , a .,.
+ a (c1 . + c, + a (C.. +.c., 8)= (2.15)

a (Rol + R,3 V - Oo) a (HOA +,FfV)
O X0 , =a-

r+wY(C", L1]+[- (C. a .
C 8'- + r.

-[ =(. 1 , (,,2 .. ]
+ ( a,

.+.c, )+ (c= Tic-,
+.7 -j



04 80D

For convenience, the designation W-- 7-= is used in (2.15)-

(2.19); from this,

T"(8 etc.

3. Certain particular cases. The case when the temperature

changes only throughout the plate, T = T(z). In the examined case the

system of equations (2.15;-(2.19) is simplified and reduces to the

following system of five uniform differential equations with constant

coefficients

(CILat i+ Cadat)u+ (Cu+ C.) ~ [K., + (KI + 2K. (3.1)

- + c., -q + (Cu, + C.,) 0

Bcu Do +c, 0 1" [(K+ + 2X).W+ K" w +

+7j t + (C- 'i + C0
(C11 1 + C t) 81y (3 .2)

alp a*'V 0- - (3.3)

K, 1 1+K..-f)M++(K,+.- [D1-,,' +(D.+2D..) +

+Kill - + Kui-j -2? ,P + (Kin + Ke -

_ " K a '
(K,, + K.) -g + kKos+ K. IF - (D12 + 2D") +D , +

+ (K,=1 + K ) -,+- L K -2()]*.' (3.5)

The case when the temperature changes only along the coordinate

axes x and X, T - T(x,y). In this case we have

aBf W B ,W.), Q j O(X. Y) (i -tI 1 12, 22, 4 4, 55, GO; i=-1, 2)I - 3,Ts, i(0,T) I ,(PT) (3.6)

2 2 =z ' 2 & Y
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Using (2.7), from (2.1) and the last two equations of (2.1X) we

obtain

-T)s ,- T-) V(+)-W (3.7)

Taking into account (3.6) and (3.7), from (2.14) we will have

hC B hG

D , i l -C C u,= " C Ct.'- O, Kil j- j-

. Bi ha K a K(I)j

(i- It 12,22. 66; v.x, v) (3.8)
BiAS as (0,T) , Bah 8 (0,T)

(i 11, 1 2. 22; v =- x. y, j y, x)

to- QTh, Ol (M - 1, 2)

Inserting (3.8) into (2.15)-(2.19) we obtain the following system

of differential equations with variable coefficients

W Ty ay)(3 .9)
8,8, ol (PT) (B, + 2B.) h' ' (AT) a (QT)

'24 +a'- + - ,

am ax Ox a W

4P2. 8' (0,T) (D-- 2B**) h F 8' (A.T) 8 (QT)
24 a? + 4 w- _a(P alp 0

-; +a=o

+ B.. +h8 8 __ B[a(A. a :)]8, a31 a)

+ hi  a I ° \a* h ra [,6 1 (I
I -- [2 I B , -j1 +j -F, ( am D+. Oy]*
-L" f- B...i - + [B. L (. 01),

to ax
:  

aY IJ44 W a a 1,"O

The system of equations (2,15)-(2.19) was broken down into ;wo
systems: (3.9) (plane problem) and (3.10) (bending without expansion-

contraction of the average plane).

-8-



4. Cylindrical bending of a plate. Having directed axis x along

the span of the plate, from (2.15)-(2.19), taking into account (2.7),

we obtain

-dX- dx) -x dK1 1 dz W + ciig WxW = dx

dqqldx = 0 (4.1)
d Kidu d ( L d'w + d • d hl -d(R,,x-Ou)
-\ - dx-dX--- dD u- + I m* +1iii2j7  dJ

From the second equation of (4.1) we find = const. Considering

this, and having integrated once the first and third equations of

(4.1), we will have

du d w

dx --- (4.2)

Ki - DI dsu - Kln + ±-t z + Rill - e,, + c,(43du dxsh'

where C1 and C2 are constants of integration.

For definiteness, having taken C11]D11 - K11
2 / O, (4.2) and (4.3)

iie will obtain

du = C 1 L)-K 1 [(p (KI1 K11 2 -DI 1 Ci - Ku A, 7z

+ CID,, - C*Kii + D11R3llo" - K 1 l uI - DuOl. + 011]i

e= 1WJ-A [9p (CIKaII'- Kiinxu - C Al)+ (4.4)
77 U,7,0,. -X+s1

+ IKII -1 11  ,- I llA x - iI III' - K1101, + C11 11]

Integration (4.4) does not present any great difficulties for the

known law of temperature change and for given functions which express

the dependence of the deformation factor and the thermal coefficient

of expansion on temperature.

The six constants of integration which enter into expressions T,

u and w are determined from the conditions that the plate is attached

-9-



along the sides x - 0 and x - 1. [There are three constants of integra-

'on T, C1 and C2 in (4.4) and three also appear as a result of

integration of (4. ).]

Exale O the olo u ation. We will examine a case when sero

temperature is maintained at the lower surface of the plate, while

at the upper surface the temperature changes linearly from 00 to 4000,

i.e.,
T h A

Tm 400 id s - TmO 1g - (4.5)

We can easily see that the temperature function

T -400-(+) (4.6)

satisfies the known equation of heat transfer and the boundary con-

ditions (4.5).

We will take [5]
S. Cg

~O.OO 5 T , ~ 1  o at, (4.7)
I&1D &m. IP& M Caong

Introducing (4.6) into (4.7) and introducing new variables

2s .. x4s

from (2.9), (2.14) and (4.4) we will obtain the values of the first

derivative of displacement u and the second derivative of displace-

ment w with respect to variable ca, which contain logarithmic terms.

'.rk ni into account the boundedness of variable o

vie r t.e condition Z k x k 0] and given the accuracy of t;-,4zi,

i: . ,He can substantially simplify the obtained resuits,

* ... xpaded the iogarltmlc functions into power series &Wl

.. ... -. .--;. .:I .+2 - 0-



having limited ourselves to an accuracy of 1 + a) a 1, after integra-

tion we will obtain

UMU(. To CI, ct,. C,). .- (,. TO C. C,, ca. C,) (4.9)

Introducing (4.2) and (4.9) into (1.2), (2.10), (2.12), and (2.13),

we can easily find the stressess displacements, forces, and moments

expressed by constants 9 and Ci (i - 1, 2 .... 5), the values of

which are determined from the conditions that the plate is attached

at the edges x - 0 and x - Z (correspondingly, co - 0 and o - 0.1).

We will examine a case when along the sides x - 0 and x - Z where

- z - 0, the following conditions are satisfied.

M 0. (4.10)

From (2.10), (4.9), and (4.10), taking into account the bounded-

ness Tj( hI 1 1), we will have

337A ROD
CS- , c, -- C4 -oCS 0D"-W-

9 2.59 + O0A4810".. 0.S1 + O. V9 * .
1--~~~~ t-., " , - -O.AK W -e (4.11)

Here

AWGt- SW"7 SOM ,.LI~

Obviously from (4.11), in the case h* - 0.114-1.00, the correc-

tion resulting from taking into account transverse shear when deter-

mining C2 can reach 5-44%.

Introducing (4.4) into (2.13), for the deflecting moment N. we

will have

M. O.O30*x + C,

FTD-TT-63-529/+2+4 -11-



from which it is evident that taking into account the influence of

t.ansverse shear can in certain cases very substantially influence

the calculated values (for example, the value of the deflecting moment

Xin 0r0s5 seatIon x w 0 in the mentloned exaqile) .

Submitted July 10, 1961
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